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Abstract Registration methods are used in the meshing

field to ‘‘adapt’’ a given mesh to a target domain. Finite

element method (FEM) is applied to the resulting mesh to

compute an approximate solution to the system of partial

differential equations (PDE) representing the physical

phenomena under study. Prior to FE analysis the Jacobian

matrix determinant must be checked for all mesh elements.

The value of this Jacobian depends on the configuration of

the element nodes. If it is negative for a given node, the

element is invalid and therefore the FE analysis cannot be

carried out. Similarly, some elements, although valid, can

present poor quality regarding Jacobian-based indicator

values, such as the Jacobian ratio. Mesh registration pro-

cedures are likely to produce invalid and/or poor quality

elements if the Jacobian parameter is ignored. To repair

invalid and poor quality elements after mesh registration,

we propose a relaxation procedure driven by specific

validity and quality energy formulations derived from the

Jacobian value. The algorithm first recovers mesh validity

and further improves elements quality, focusing primarily

on nodes that make the elements invalid or of poor quality.

Our novel approach has been developed in the context of

non-rigid mesh registration and validated on a data set of

60 clinical cases in the context of orthopaedic and

orthognathic hard and soft tissues modelling studies. The

proposed repair method achieves a valid state of the mesh

and also raises the quality of the elements to a level suit-

able for commercial FE solvers.

Keywords Meshing � Mesh repair � Registration � Finite

element method � Quality improvement

1 Introduction

The finite element method (FEM) [13, 33] is a numerical

technique computing an approximate solution to a set of

partial differential equations (PDEs) and therefore, it is

widely used to simulate mechanical behaviors.

The FEM relies on a subdivision of the continuum

domain X to be simulated. This subdivision, called mesh, is

the partition of X into simpler geometrical bodies known as

elements. The FEM provides an approximation of the

solution to the system of PDEs at each node of the mesh.

This approximate solution can be further computed at any

point p 2 X by interpolation of the values found at the

nodes of the element containing p.

The context of our work is biomechanical modeling of

human organs for biomedical applications. In this field, the

most common way to produce a mesh is to perform the

following steps:
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• Acquire volumetric medical images of the patient’s

organ using magnetic resonance imaging (MRI), ultra-

sound (US), computed tomography scanner (CT) or

other imaging techniques.

• Achieve image segmentation in order to produce a

cloud of points or an initial surface mesh defining the

geometry of the modelled domain.

• Add internal nodes to produce the 3D elements that will

conform the final volumetric mesh.

Some examples of such mesh generators are [1, 12, 23]

for tetrahedral meshes. Others like [26, 32] are interested in

hexahedral meshes and finally other works such as [19, 20]

focus on the production of mixed-element meshes.

Even though those techniques are suited for most of the

cases, in the medical field it is sometimes preferred to work

with ‘‘registration’’ techniques which take advantage of an

a priori knowledge of the studied body part. Consider for

instance the concept of image registration which is the

process of transforming different sets of data into one

coordinate system. In the case of mesh registration, the

different sets of data come on the one hand, from a generic

model, named the Atlas, and on the other hand, from

patient data. The Atlas is usually a predefined volume mesh

conserving all the relevant data for the simulation. The

patient data is usually a set of points or a surface mesh.

The first step is to compute a rigid registration between

the Atlas and patient data, which consists, in the case of

medical image processing, in converting both data sets in a

common coordinate system. The second step is to produce

an elastic registration, which consists in deforming the

Atlas in order to represent or fit the patient data. This

process is called ‘‘mesh registration’’.

There exist several mesh registration techniques, but the

present work focuses on the so called mesh-matching

(M-M) algorithm introduced by Couteau et al. [6]. The

statement is that building a mesh of an organ is a complex

task. To achieve accurate surface representation and good

quality while limiting the number of elements in the mesh is

somehow a difficult compromise. Therefore in many cases,

meshes are built by hand. As this task is time consuming

and usually requires expert user interaction, it cannot be

easily put in practice for a great number of patients.

Therefore an interesting alternative is to use a pre-defined

generic FE mesh (the Atlas mesh) of the target organ in

order to achieve accurate representation of its structure.

FE mesh construction relies on the patient data obtained

from segmented medical images. The resulting data can

either be a cloud of points or a surface mesh of the organ.

Using this representation a mesh registration process fits the

surface nodes of the Atlas onto the target organ by applying

a transformation function T. In other words, an elastic

registration function is an application T : R
3 ! R

3 that

minimizes a given registration error, or better said ‘regis-

tration energy’, between a given source points set S and a

destination points set D. The registration energy is a ‘sim-

ilarity’ measure between the transformed source points set

T(S) and the target destination points set D. If the regis-

tration energy and function search space are not carefully

defined, finding T is an ill-posed problem, i.e. the existence

and uniqueness of the solution are not guaranteed.

The registration energy can be freely defined in order to

reflect the nature of the registration problem. An optimal

registration is achieved when this energy reaches zero i.e.

when each transformed source point has found a counter-

part within the destination set. Given the sparse and uneven

nature of the data, the search for the elastic transformation

must be constrained in order to avoid erratic registrations.

Various approaches to produce a registration have been

proposed in the literature [6, 7, 24, 29], the discussion of

which falls out of the scope of this article.

Note that T is computed using the surface nodes S (of the

Atlas volume mesh) and the points set D (patient data).

Moreover, T is a 3D transformation function so it can be

applied to the Atlas internal nodes in order to produce a 3D

mesh of the target organ, called ‘‘patient mesh’’. Unfortu-

nately it has been reported [21] that, in some cases, the

application of T to internal nodes can produce invalid or

poor quality elements (both concepts are defined in Sect.

2). Figure 1 shows an example of M–M (here illustrated in

2D for clarity) and suggests how invalid and poor quality

elements can be created.

Note that invalid and poor quality elements are not only

produced by registration methods [2, 5, 25], but can also

appear in the output of meshing techniques such as the

whisker-weaving from CUBIT1 [17].

The goal of the present work is to repair the invalid and

poor quality elements that might result from the process of

mesh registration. The proposed method is based on the

computation of the determinant of the element Jacobian

matrix and to this end Sect. 2 defines what are invalid and a

poor quality elements. Section 3 gives the State of the Art

regarding mesh repair and quality improvement in our

scope. Section 4 explains in further detail our proposed

solution, in particular the Jacobian formulation, the penalty

functions that are used, our algorithm and a practical

example. Finally Sects. 5 and 6 provide conclusions and

perspectives.

2 Definition of invalid and poor quality elements

This section introduces the concepts of invalid and poor

quality elements. It is important to mention that the two

1 See http://cubit.sandia.gov for details.
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definitions proposed here rest upon the Jacobian matrix of

the mapping function F relating the parent, or reference,

element frame to its actual coordinates within the mesh. In

the remainder of the article this matrix is denoted as J. Note

that other geometrical functions can be used to define the

quality of an element [8, 19, 20, 31].

2.1 Invalid element

As mentioned before, the FEM computes for each node of

the underlying mesh an approximated solution to the sys-

tem of PDEs describing the physical phenomenon under

study. For this purpose, a perfect element is defined in a

reference parent system ðn1; n2; n3Þ where each reference

element point is related to its actual counterpart within the

element in the modeled domain referential ðx1; x2; x3Þ

through the mapping F, as shown in Fig. 2. The Jacobian

matrix of mapping F considered at a parent frame point n is

defined as:

JðnÞ :¼
oF

on
ðnÞ

The FE analysis can be carried out on a mesh as long as

the mapping F, considered for each mesh element, remains

a one-to-one application. For a given element, this property

can be assessed by considering the determinant of

the Jacobian matrix of F, jJðnÞj; at a number of ‘‘control

points’’, such as the element nodes or Gaussian quadrature

(integration) points. This check must be carried out for all

the elements forming the mesh prior to FE analysis. If a

Jacobian value is found to be negative, then the mapping

F for the considered element is not a bijection, which

makes the mesh not suitable for FE analysis as the singu-

larity of the mapping F leads to modeling inconsistency.

Let us consider this situation from a geometrical point of

view as illustrated in Fig. 3. If nodes b, c and d are con-

nected to node a then an imaginary plane can be formed by

nodes b, c and d. The normal n̂ of this plane is computed as

(c - b) 9 (d - b). After normalizing the vector n̂ the

signed distance of a to the plane can be computed as: ðaÿ

bÞ � n̂ . If this distance is positive, then the position of a is

valid within this element. If not, then this element is con-

sidered invalid for the FEM at node a.

Note that the value of jJðnÞj must be considered for each

node within each element. If a node a is shared by two

elements e1 and e2, it is possible to devise a nodal con-

figuration where the position of a is valid within e1 but

invalid within e2.

2.2 Poor quality element

The Jacobian value measures the distortion of the actual

mesh element w.r.t. its reference configuration at a given

(a) (b)

(c) (d)

Fig. 1 The mesh-matching

algorithm: (a) The Atlas mesh,

(b) the target domain or patient

data, (c) the Atlas and the target

surface domain represented by a

dashed line and (d) the final

mesh of the target organ

obtained by applying the

transformation function T onto

the entire Atlas mesh. The

circled region shows the

location of possible distorted

element leading to mesh

invalidity or poor quality

0P

P1

P3

P4

P5
P6

7P

P2

N0

N2

N1

N3

N4

N5
N6

N7
P0

P1

P2

P3

P4

P5

P6

7P

N0

N1

N2

N3

N4

N5

N6

N7

x

x

x3

2

1

F
Fig. 2 The reference-to-actual

frame mapping from which the

Jacobian matrix is derived. Left

the reference/parent space and

right the current/actual mesh

space
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point but does not carry overall distortion information. To

overcome this issue the quality of an element can be

measured at each node n as a ratio between the nodal

Jacobian value at n, and a global distortion information.

The latter is given by the maximal Jacobian value among

those measured at all element nodes. This element quality

criterion is called Jacobian Ratio or JR [19].

Mathematically, the JR at node n0 taken within element

e, JRn0
e , is computed as:

JRn0
e :¼ jJðn0Þj=maxn2efjJðnÞjg

Considering the case presented in Fig. 3, the value of

jJðaÞj , computed at node a within the element, would be

very small if a was close to plane bcd and so would be the

value of JRa . Indeed, when JRa value is positive, but close

to 0, the element presents a poor quality at node a. When

the JR increases, so does the quality of the element until it

reaches the ideal value of 1.

As it is usually impossible to find a mesh configuration

where all the JR within the mesh have the perfect value of

1, the mesh repair procedure must rely on a quality

acceptance threshold. We have chosen to follow the rec-

ommendations adopted in the commercial FE analysis

software ANSYS (ANSYS Inc., USA), where an element

e is said to present poor quality when any node n within

e has a JR value lower than 0:03 [14]. A good quality

element, thus, has all its JR values within the interval

½0:03; 1�:

3 Overview of mesh repair techniques proposed

in the literature

In this work, our goal is to achieve validity and improve the

quality of the elements in a mesh after applying a non-rigid

registration in the context of mesh generation procedures

such as the mesh-matching introduced in Sect. 1. To do so,

we focus specifically on the Jacobian matrix as it is at the

root of many popular mesh rejection criteria implemented

in commercial FE analysis softwares.

In the literature we can find several interesting

approaches for mesh quality improvement based on the

Jacobian criterion, both in surface and volume meshes. In

the case of surface meshes, an algorithm to perform

optimization over triangular and quadrilateral 2D meshes

based on reference Jacobian matrix was introduced in [18,

30] and later extended to 3D surfaces in [11]. In the case

of volume meshes, Freitag proposed in [9] the use of

Laplacian-based algorithms to improve the overall quality

of meshes. In particular, the Smart-Laplacian algorithm

proposed in [9] changes the position of a given node only

if it results in overall quality improvement. This filter is

implemented in such a way that no invalid element can be

generated within the mesh. Following the same idea,

Freitag and Plassmann proposed in [10] the combination

of Smart-Laplacian with optimization algorithms, having

a much higher computational cost than the Laplacian filter

alone, in order to achieve mesh untangling. In this

approach, invalid mesh configurations are eliminated by

mesh nodes reallocation and the applied optimization

maximizes the minimum volume of tetrahedra in a local

sub-mesh.

Both volume repairing techniques presented above are

designed to repair tetrahedral meshes, and the idea of

extending this concept to hexahedra and wedges was

introduced by Knupp in [16, 17]. The main principle here is

that the reallocation of a given node will only change the

Jacobian values of the nodes edge-connected to it (as

showed in Sect. 2.1). Moreover, for the tetrahedron, wedge

and hexahedron each node is connected to three nodes

within each element it is part of, therefore for those ele-

ments, a Jacobian-based repair method can always be

geometrically reduced to an optimization based on tetra-

hedra. More recently, Paoletti in [27] extended this

approach to polyhedral meshes by including the ‘‘interpo-

lation tensor’’ to the optimization.

Another important work was carried out by Kwok and

Chen [19] where the focus was made on the quality of

hexahedra and wedges. The Jacobian Ratio was used to

improve the quality in conjunction with other quality

n^

a

b

c

d

bcd plane

n^

b

c

d

bcd plane

a

Fig. 3 If the signed distance of

node a to the plane formed by

‘‘connected nodes’’ b, c and d is

positive, the element is valid

(left), in any other case the

entire element is said to be

invalid (right)
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functions such as the aspect-ratio, the warping factor and

the control number [15].

The above mesh untangling techniques are focused

mainly on overall mesh quality by moving only internal

nodes. They do not need to move ‘‘surface’’ (or boundary)

nodes because they are already well located according to

the employed meshing technique. Unfortunately, this is not

the case for ‘‘mesh registration’’ techniques. Let’s recall

that this family of strategies intend to match a predefined

FE mesh to a target domain. If the performed ‘‘registra-

tion’’ is accurate, it means that the domain is well repre-

sented. Nevertheless, producing a valid mesh might only be

possible by allowing surface node reallocation. For this

reason, the subsequent mesh repair procedure must be able

to reallocate surface nodes and therefore move as little as

possible the nodes in order to achieve mesh validity and

acceptable quality levels while preserving an acceptable

organ shape representation level. Moreover, we consider

that separating validity recovery and quality improvement

procedures is important when repairing a mesh as proposed

in [10]. The eventual problem when not doing so is that if

an invalid node a and a poor quality node b are connected,

finding a new position to improve the quality of b might

decrease the chances of finding a new valid position for a.

A completely different approach was proposed by Luboz

et al. [22]. This work was considered as a continuation of

the mesh matching (M–M) technique, initially presented in

[6], as it repairs invalid configurations after registration.

First of all, it relies on the determinant of the Jacobian

matrix of the mapping between parent and actual element

configuration F, to detect the nodes that make the elements

invalid. Let n be one of these nodes and feigi¼1;...;k the set of

elements for which n is invalid. The direction of displace-

ment of n is deduced from the gradient of F computed from

each ei. In other words, the direction of displacement of n is

the one that best increases the sum of the Jacobian values

associated to node n. A ‘‘displacement step’’ is also com-

puted for each node and finally the overall set of invalid

nodes is iteratively shifted until the mesh is repaired.

Although the approach of Luboz was successfully used to

achieve a valid state of several registered meshes, in some

complex cases a valid mesh configuration could not be found

and furthermore it did not consider the JR to improve the

quality of the elements. Another important remark is that

Luboz computed the direction of displacement of invalid

nodes n by considering only elements at which n was

invalid, and it should be noted here that if two elements e1
and e2 share node n and e1 is valid but e2 is not, the dis-

placement of n to improve e2 might cause invalidity at e1.

In this article, we propose a new mesh repair technique

that only considers the displacement of nodes that make the

mesh invalid or of poor quality. To compute the new

position of a given node, all the elements linked to it are

taken into account. Moreover, cases where invalid config-

urations arise from the computation of new nodal positions

are also managed. Once mesh validity is achieved, the

overall quality is assessed and if necessary, our algorithm

reallocates mesh nodes exhibiting poor quality. Here, the

chosen quality indicator is the JR [19], for which we have

chosen a threshold value JRmin ¼ 0:03 , as mentioned

earlier in Sect. 2.2. The details of our mesh repair tech-

nique are given in the next section.

4 The proposed mesh repair procedure

The mesh repair procedure proposed in this article is a

twofold sequential process:

• first all the elements in the mesh are inspected and, if

necessary, their nodes positions are adapted so as to

recover validity,

• then a second procedure is carried out on the mesh if

the achieved quality levels are unacceptable.

The corrections applied to the nodal positions are based

on the validity and quality criteria, both derived from the

Jacobian of the mapping between the parent and actual

element frame, as described above. Section 4.1 gives the

details on the evaluation of the Jacobian for a given element.

Usually distorted elements are sparsely distributed

within the mesh, therefore both validity and quality opti-

mizations can be carried out on ‘‘repair regions’’ defined as

connected subsets of the mesh encapsulating distorted

elements where displacements may only be applied to

‘‘improper nodes’’, i.e. nodes being either invalid or pre-

senting poor quality, leaving other regions unaffected. This

local repair strategy significantly decreases computational

complexity as the number of degrees of freedom to be

considered in a region is usually small. The local relax-

ations strategies for both validity recovery and quality

improvement are described in Sect. 4.2.

The above mentioned relaxations are carried out as

maximizations of validity and quality ‘‘energy’’ terms. The

formulation of each energy term ensures that the mesh

nodal configuration reached at the end of the maximization

procedure meets the desired validity or quality standards.

The formulations of both energy terms are discussed in

Sect. 4.3.

The complete implementation of the iterative relaxation

algorithm, common to both validity and quality optimiza-

tion phases, is given in Sect. 4.4.

Finally, Sect. 4.5 gives a complete registration and

repair example in which the processing of a particular

repair region is discussed in detail.
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4.1 Jacobian computation

4.1.1 Parent-to-actual element mapping

Mesh relaxation relies on the iterative computation of the

Jacobian matrix of the mapping between the element parent

(or reference) coordinates system ðn1; n2; n3Þ and the actual

element coordinates ðx1; x2; x3Þ : F : R
3 ! R

3; n 7!x (see

Fig. 2). The Jacobian matrix is computed at a number of

‘‘control points’’ which can be either mesh nodes or ele-

ment integration points (Gaussian quadrature points).

For a given element type and mesh configuration the

Jacobian matrix oF=on can be assembled and the exact

value of its determinant quickly evaluated using pre-

computed element shape function derivatives w.r.t. parent

coordinates, as described below.

Let n ¼ ðn1; n2; n3Þ be an element point in parent

coordinates and x ¼ ðx1; x2; x3Þ the corresponding point in

the actual element coordinates, i.e. x ¼ FðnÞ . For an iso-

parametric element the mapping F can be expressed as a

combination of the shape functions /i
: R

3 ! R used for

value interpolation of the PDE solution within the element:

xðnÞ :¼ FðnÞ ¼
X

N

n¼1

/nðnÞ xn ð1Þ

where N is the number of nodes of the considered element

and xn ¼ ðxn1; x
n
2; x

n
3Þ are the coordinates of the nth element

node in the actual mesh configuration.

The Jacobianmatrix J is defined at parent frame point n as:

JðnÞ :¼
ox

on
ðnÞ ¼

J11 J12 J13
J21 J22 J23
J31 J32 J33

0

@

1

A

where Jij ¼ ðoxi=onjÞðnÞ .
The Jacobian matrix elements can be further rewritten

using Eq. 1, as:

Jij ¼
o

onj

X

N

n¼1

/nðnÞ xni ¼
X

N

n¼1

o/n

onj
ðnÞ xni ¼

X

N

n¼1

Pn
j ðnÞ x

n
i

In the above expression all Pn
j ðnÞ :¼ ðo/n=onjÞðnÞ

are independent of the current element configuration

fxngn¼1;...;N and can be evaluated beforehand for all the

foreseen control points n .

Finally, the Jacobian matrix of mapping F computed at

point n is assembled using the 3 � N pre-computed shape

function derivatives Pn
j as follows:

JðnÞ ¼
X

N

n¼1

xn1
xn2
xn3

0

@

1

A Pn
1ðnÞ Pn

2ðnÞ Pn
3ðnÞÞð ð2Þ

From the computational point of view, the assembly of

the matrix JðnÞ requires 9 � N multiplications and 9 � N

additions, and the computation of the 3 9 3 determinant

jJðnÞj , 9 multiplications and 5 additions.

If fast computation is mandatory, the technique pro-

posed by Knupp [16] and based on a geometrical decom-

position of hexahedra and wedges into tetrahedra, can be

considered.

4.1.2 Normalized Jacobian value

The Jacobian of the mapping F at parent point n represents

the ratio between the measure of an infinitesimal volume

located around n and its image by F in the element actual

configuration, as suggested by the notation ox=on .

At element definition stage, parent coordinates magni-

tudes are usually not related to the physical world of the

modeled domain. If the modeled domain has dimensions

the order of the millimeter and the mesh nodes coordinates

are expressed in meters, then these coordinates are the

order of 0.001. The parent coordinates, on the other hand,

are usually defined in a standard frame and their value

range is in the order of 1.

As a consequence, if we consider a perfectly regular

element, the Jacobian computed at one of the nodes already

carries the information of the scale change in all three

dimensions. Its value is thus 0:001� 0:001� 0:001 ¼

10ÿ9 . This small value, although mathematically correct,

does not numerically reflect the evenness of the element

shape. In this case, the expected Jacobian value, ignoring

the scale change, would be 1.

In order to measure element distortion while eliminating

the scale factor between parent and actual element refer-

ential, we use a ‘‘normalized’’ value of the Jacobian

defined as the product of the original Jacobian value

defined above and a correction term K computed as

follows.

Let us consider the trihedral defined by the Jacobian

under study. Let x be the mean edge length of the three

edges forming the trihedral in the actual element frame.

Now let n be the mean edge length of the corresponding

trihedral in parent configuration. We define the correction

factor in 3D as:

K ¼
n

x

� �3

In 2D the above fraction should be raised to the power of

2. The normalized value of the Jacobian computed at

parent point n is now defined as:

JðnÞ :¼ KJðnÞ

If we consider the initial example where a scale factor of

0.001 was applied to all three coordinates between parent

and actual element frame, the normalized value of the
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Jacobian for all element points is now J ¼ 1 . This fact can

be formally apprehended by considering the following

rewriting of the normalized Jacobian and noting that the 3D

determinant raises the contents of the Jacobian matrix to

the power of 3:

JðnÞ ¼
n

x

� �3
ox

on

�

�

�

�

�

�

�

�

¼ 1

To simplify subsequent computations, we will assume

that both mean edge lengths n and x computed beforehand

using the input mesh configuration, do not significantly

vary during validity or quality relaxations. The K scale

factor computed for a given Jacobian is thus considered

constant.

In the remainder of the article, for the sake of clarity, we

will omit the bar placed over the J symbol, as in the above

notation, and refer to the normalized Jacobian simply as

‘‘Jacobian’’.

4.1.3 Jacobian differentiation

As the relaxation procedure relies on variational compu-

tation of Jacobian or JR values w.r.t. actual element nodes

coordinates, it is interesting to derive from the formulation

given in Sect. 4.1.1 the required differential expression. To

this end, let’s consider a Jacobian value estimated at parent

point n within an element built on the set of nodes

fxngn¼1;...;N .

The Jacobian matrix depends now on the element nodes

positions, hence J ¼ Jðx1; . . .; xN ; nÞ , and we shall seek the

expression of the partial derivative of the determinant

Jðx1; . . .; xN ; nÞ
�

�

�

� w.r.t. the ith coordinate of the nth node,

i.e.:

o Jðx1; . . .; xN ; nÞ
�

�

�

�=oxni

For clarity, we denote this quantity as oJni ðnÞ . Thus:

oJni ðnÞ :¼
o

oxni
Jðx1; . . .; xN ; nÞ
�

�

�

�

¼
o

oxni

X

N

n¼1

xn1
xn2
xn3

0

@

1

A Pn
1ðnÞ Pn

2ðnÞ Pn
3ðn Þð Þ

�

�

�

�

�

�

�

�

�

�

�

�

The analytical expression of the above derivative can be

easily obtained for i = 1, 2, 3. Let’s start by deriving it for

i = 1. Expression 2 can be rewritten as:
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Now let’s denote Mij the minor of matrix J after removal

of row i and column j. For example:

M23 :¼
J11 J12
J31 J32

�

�

�

�

�

�

�

�

¼ J11J32 ÿ J31J12

Using the minor notation, the determinant of the matrix

in Eq. 3 can be developed w.r.t. the first row as:

Jðx1; . . .; xN ; nÞ
�

�

�

� ¼ M11

X

n

xn1P
n
1ðnÞ ÿM12

X

n

xn1P
n
2ðnÞ

þM13

X

n

xn1P
n
3ðnÞ

After deriving the above expression w.r.t. xn1, it follows

that:

oJn1ðnÞ ¼ M11P
n
1ðnÞ ÿM12P

n
2ðnÞ þM13P

n
3ðnÞ

Finally, the general expression of oJni ðnÞ can be obtained

by developing the determinant of the Jacobian matrix w.r.t.

the ith row:

oJni ðnÞ ¼ ðÿ1Þiþ1
Mi1P

n
1ðnÞ ÿMi2P

n
2ðnÞ þMi3P

n
3ðnÞ

� �

4.2 Local relaxations

The goal of the relaxation procedures is to successively

optimize the Jacobian and JR values, during validity

recovery and quality optimization phases respectively, by

moving the ‘‘improper nodes’’ (INs), i.e. the mesh nodes

which Jacobian or JR values need improvement. As the INs

are being moved by the relaxation procedure, the Jacobian

or JR values at the neighboring nodes can also be altered

and potentially degraded.

Given the large number of nodes often found in FE

meshes, repairing procedures can quickly become compu-

tationally prohibitive. This complexity can be greatly

reduced by grouping all INs and their neighborhood into

‘‘repair regions’’ defined in such a way that all nodal cor-

rections applied inside a region leave the outside mesh

configuration unchanged. This local repair approach makes

it possible to perform all relaxation procedures indepen-

dently on each repair region identified within the mesh.

The construction of such regions is described below.

The topological definition of repair region is different

between validity and quality optimization phases. This

difference stems from the criteria being optimized: Jaco-

bian or JR. During validity recovery, the displacement of a

mesh node n affects the Jacobians of all nodes connected

by an edge to n. While during quality optimization phase,

the Jacobian at n can become the maximal Jacobian of any

element n is part of, and thus the JR of any node sharing an

element with n can be affected by its position shift.

Prior to mesh validity recovery, the repair regions are

extracted as follows. All the mesh nodes are examined. If a

node n has a negative or null Jacobian within an element

and is not already part of a region then a new region is

grown starting from n.
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All Jacobians influenced by the newly found improper

node n are listed. For each of these Jacobians, the four

nodes forming the Jacobian trihedral are evaluated. If one

of these nodes appears to be invalid, it is assigned to the

current region and all its related Jacobian trihedrals within

the mesh are in turn examined. The repair region growth

stops where all nodes under scrutiny have strictly positive

Jacobian values within all elements they are part of.

The repair regions have the following properties. An IN

is part of one and only one repair region. The same being

true of Jacobian trihedrals, the regions are computationally

independent. A repair region can comprise many INs along

with their associated Jacobian trihedrals.

The repair region extraction performed before quality

optimization only slightly differs from the above algorithm.

All mesh nodes are examined. If a node n has a JR below

the acceptance threshold JRmin , and is not already part of a

region then a new region is grown starting from the newly

found improper node n.

All JR influenced by n are listed and for each one, the

nodes forming the associated element are evaluated. If one

of these nodes appears to have a poor quality level, it is

assigned to the current region and all its related JR are in

turn examined. The region growth stops where all nodes

under scrutiny have satisfactory JR values within all ele-

ments they are part of. As before, the resulting repaired

regions are computationally independent.

During mesh relaxation phases, it is not uncommon to

find a repair region having a nodal configuration for which

a solution cannot be found by only moving its INs. In such

a case, the number of degrees of freedom of the region

needs to be extended by allowing other nodes to be dis-

placed by the relaxation procedure.

In our mesh repairing algorithm, we have implemented a

straightforward region extension method. A locking situa-

tion is detected in a repair region when the attractor of the

region relaxation is a nodal configuration having persistent

INs. Should this situation arise, the region degrees of

freedom are extended by allowing the displacement of a

mesh node connected to a region IN by an edge, during

mesh validity recovery phase, or by an element, during

quality optimization phase.

This new node is tagged as ‘‘improper’’ although its

associated Jacobian or JR values are acceptable, as it was

not identified as IN in the first place. Validity or quality

criteria are used to choose the new IN among all possible

neighbors to the region INs. During mesh validity recovery

or quality optimization, the node having the lowest Jaco-

bian or JR respectively, is selected.

As the extended region has a wider influence on the

surrounding mesh configuration and might overlap with

another region, a ‘‘fusion’’ check is performed after a

region has been extended. To this end the sets of Jacobians

influenced by the INs of all regions are checked against

each other. If a common Jacobian is found between two

regions, these regions are merged into a single one. This

way, the resulting repaired regions layout retains the initial

numerical independence that allows all regions to be pro-

cessed separately and efficiently.

4.3 Validity and quality energy formulation

The goal of validity recovery for a mesh region R is to find

a configuration where all the Jacobians2 in R, fJjgj2R , are

positive. This nodal relaxation can be formulated as a

maximization procedure driven by a ‘‘validity energy’’ EV,

expressed as the sum of all Jacobians within R.

Since the maximization of a sum of terms does not

guarantee that all terms end up being positive, all the

Jacobian values within the sum are affected by a penalty

function uk , which strength is controlled by an index k,

giving the expression of validity energy:

EV ¼
X

j2R

ukðJjÞ;where ukðtÞ ¼ 1ÿ eÿkt

As the parameter k is increased during the maximization

process, the influence of negative values overbalances the

positive ones thus favoring a solution where all Jacobians

in the sum are positive.

Figure 4 shows the plot of uk for three different values

of k. As can be seen in the figure, ukðtÞ� 1 for all values of

t; the slope at 0, which is the acceptance threshold for the

region Jacobians, is k; and the function decreases rapidly as

t reaches lower negative values.

The aim of the quality optimization procedure, on the

other hand, is to find a nodal configuration where all the JR

in a region R, fJRjgj2R , are above a predefined value JRmin

which, in our implementation, was set to 0:03 in accor-

dance with the quality standard required by the commercial

FE analysis software ANSYS Workbench (ANSYS Inc.,

USA) [14].

We define the ‘‘quality energy’’ EQ associated to this

relaxation problem as the sum of the JR within R weighted

by a different penalty function wl, thus:

EQ ¼
X

j2R

wlðJRjÞ;where wlðtÞ ¼ 1ÿ elðJRminÿtÞ

Similarly to mesh validity recovery, a penalty parameter

l is used to find a solution where all the JR contributing to

the sum EQ are above the quality threshold JRmin . The

penalty functions wl behave similarly to uk : all values are

lower than 1; the slope at the JR acceptance threshold JRmin

2 Note that in the remainder of the article, all considered Jacobian

values are assumed to be normalized as described in 4.1.2
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is l; and all values below this limit are increasingly

penalized as the value of l is raised during relaxation.

Prior to region relaxation at validity recovery or quality

optimization stage, the initial values of the parameter for

the corresponding penalty function uk or wl must be

carefully chosen. Indeed, given their formulation, an

excessive penalization of unwanted Jacobian or JR values

might induce strong numerical instabilities in the optimi-

zation process. To avoid this issue, the starting values of

k or l are determined by computing the slope of the con-

sidered penalty function at the most penalized energy term

(minimal Jacobian during validity recovery; minimal JR

during quality optimization) and ensuring that they do not

exceed a predefined slope threshold.

As the optimization advances, the penalty level k or l is

steadily risen to force all energy term values to converge

towards the desired interval: ]0, 1] during validity recovery

and �JRmin;1� during quality optimization phase.

Both optimizations are carried out by gradient ascent,

with a limited number of ascent steps, each having a limited

amplitude. These restrictions ensure that the nodal config-

uration of the relaxed mesh retains as much similarity as

possible with the input mesh. The detailed relaxation

algorithm is discussed in Sect. 4.4.

4.4 Validity and quality energy maximization

Both relaxation procedures, i.e. the maximizations of the

energies EV and EQ defined above, are performed for each

region by gradient ascent. The optimal nodal correction

directions are given by the gradient of the energy with

respect to the coordinates of the INs in the considered

region. These vectors are computed at each step using the

derivatives of the penalty functions duk=dt or dwl/dt along

with the expression of the Jacobian differential given in

Sect. 4.1.3.

The procedure successfully stops once an acceptable

nodal configuration has been found. Otherwise, if locking

configurations are detected, successive region extensions

are performed and the relaxation is repeated with a higher

number of degrees of freedom in the region under study.

The relaxation procedure fails if no suitable nodal config-

uration can be found.

The mesh repair technique presented here was devel-

oped as part of the mesh-match-and-repair [3] algorithm

which relies on a non-rigid deformation of a generic mesh

towards a specific geometry. In this context, the quality of

the domain surface representation yielded by the non-rigid

deformation procedure must be preserved as much as

possible by the mesh relaxation.

In the biomedical field, the dimensions of the modeled

organs are the order of the centimeter, and usually a sub-

millimetric mean surface representation accuracy is

required to ensure the relevance of the finite elements

analysis. To limit the alteration of the surface representa-

tion produced by non-rigid registration, our implementa-

tion of mesh repair limits the number of relaxation steps to

50, and the maximal amplitude of nodal corrections at each

step to 0.1 mm. The maximal allowed nodal displacement

is thus 5 mm, a situation which seldom occurs as it requires

the same node to be moved in a constant direction

throughout the relaxation process.

The common structure for both relaxation procedures is

given by Algorithm 1 and the main steps (identified by a

number) are commented below.

(1) To ensure numerical stability of the relaxation, find

the maximal value of k or l, depending on the current

relaxation phase, which complies with the penalty

function slope limit, as discussed in Sect. 4.3.

(2) The considered relaxation energy gradient vector

being formed by the derivatives of the energy w.r.t.

each 3D coordinate of the region improper nodes,

the coordinates of each nodal correction appear in

the gradient vector on the corresponding row. In

our specific implementation, the magnitudes of the

nodal corrections are clamped, at each step, to

0.1 mm by applying a scale factor to the overall

gradient vector. The value of the maximal nodal

correction amplitude used here is not universal and

must be determined for each application field

according to the dimensions of the modeled domain

and maximal tolerance on the representation of its

geometry. The local maximum line search in the

gradient direction is performed using the golden

section technique [28] between the current nodal
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Fig. 4 Penalty function uk plot,

at the vicinity of 0, for k = 0.5

(a), k = 1 (b) and k = 2 (c)
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configuration and the configuration obtained after

applying the maximal allowed amplitude correction.

The maximized energy functions are not smooth. To

approximate the ascent direction despite the slope

discontinuities a centered finite differences (CFD)

scheme is used. From a numerical point of view, the

CFDs act as a smoothing operator over the non-

smooth energy landscape yielding a good estimate

of the gradient in the smooth domain and managing

continuous transitions through slope discontinuity

boundaries.

(3) Raise the value of k or l so as the slope at the most

penalized term reaches its maximal allowed value.

(4) Increase the region number of degrees of freedom by

including new nodes, edge or element-connected to

the region improper nodes, as described in Sect. 4.2.

(5) The region extension can be carried out to the point

where the region overlaps the entire mesh and hence all

other regions. Yet it appears unnecessary to put into

practice this exhaustive and computationally prohibitive

solution as in most cases, acceptable region configura-

tions can be found by including in the relaxation process

the immediate neighborhood of the originally improper

region nodes. Thus, the iterations stop when all mesh

nodes connected to the initial improper nodes in the

considered region have been included.
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4.5 Repair example

Figure 5 shows an example of mesh registration and repair

for a face model. At the end of the repair process, all the

elements were valid and presented acceptable quality

(JR[ 0:03). In particular, Fig. 6 shows a sample validity

recovery for a repaired region. The invalid Jacobian tri-

hedrals are drawn in dark and the valid Jacobians in light

gray-scale.

The region repair depicted in Fig. 6 took approximately

600 ms. The region had initially 5 invalid nodes and

comprised 24 elements. In order to find a suitable nodal

configuration the region had to be extended by 2 nodes,

therefore including 8 more elements in the region. The

mean magnitude of the corrections applied to the 7 dis-

placed mesh nodes was 0.5 mm (max = 0.8 mm, r =

0.1 mm).

More examples like this can be found in [3] where 10

femur and 50 face FE meshes were successfully registered

and repaired in the context of orthopaedic and orthognathic

hard and soft tissues modelling studies.

5 Conclusions

A novel mesh repair algorithm, based on a mesh relaxation

driven by specific validity and quality energy formulations,

has been presented. It first recovers mesh validity and

further improves mesh elements quality in order to enhance

numerical results reliability. Both procedures rely on the

computation of Jacobian values within the mesh elements,

which is a mesh acceptance criterion widely used in pop-

ular FE analysis softwares. Within both validity and quality

energy formulations, the Jacobian measures are weighted

by carefully designed penalty functions that lead the nodal

corrections towards a configuration where both mesh

validity and quality criteria are satisfied. The procedure

proposed here was successfully used to produce FE meshes

suitable for FE analysis within commercial softwares [3,

4], such as ANSYS (Ansys Inc., USA).

Our mesh repair procedure only affects invalid and poor

quality regions, leaving other mesh areas unchanged. If an

acceptable configuration cannot be found by applying

corrections to invalid or poor quality nodes, other nodes are

progressively included into the repair process, according to

their validity and quality levels, following the region

extension procedure described above in Sect. 4.2. This

strategy preserves valid mesh regions as well as those with

higher quality level. In addition to the initially identified

improper nodes, only nearly invalid or low quality nodes

can be reallocated by our procedure which strongly limits

the difference between the repaired and initial input mesh.

The region-based mesh untangling process proposed in

the article is able to deal with Jacobian inter-locking situ-

ations where a solution can only be found by moving

simultaneously a number of nodes involved in shared ele-

ments. These situations require the whole set of involved

elements to be considered simultaneously and, from our

experience, can hardly be solved using a per-node approach

as antagonist nodal displacements can quickly lead to an

infinite loop in the mesh untangling routine. Moreover, all

revised mesh untangling techniques proposed in the liter-

ature are prepared to work with meshes that count with

already well located surface nodes, meaning that only

internal nodes can be reallocated in order to achieve

validity and acceptable quality levels. In the case of ‘‘mesh

registration’’, it cannot be assumed that surface nodes are

well located and therefore a repair process like the one

introduced here, that moves as little as possible the nodes,

must be used. Another important fact is that we consider

that separating validity recovery and quality improvement

Fig. 5 Left input patient data

(skull and skin surfaces

segmented from medical

images). Middle patient data

and Atlas mesh. Right the final

mesh registered onto the

patient’s skin and skull and

repaired

Fig. 6 a Initial invalid region having 5 improper nodes (INs) and 24

elements and b the repaired region formed by 32 elements

Engineering with Computers (2011) 27:285–297 295

123

Author's personal copy



procedures is important when repairing a mesh as proposed

in [10]. The eventual problem when not doing so is that if

an invalid node a and a poor quality node b are edge-

connected, finding a new position to improve the quality of

b may decrease the chances of finding a new valid position

for a. We consider that to focus on mesh validity first,

increases the chances of finding a valid position for a. Once

a and b are of poor quality, both will have the same

chances to increase their quality, but the difference is that

both start from a valid mesh.

To our knowledge, the only other Jacobian-based repair

algorithm for ‘‘registered meshes’’ was introduced by

Luboz et al. [22]. The differences between this last work

and our approach, as well as the main contributions of our

algorithm are summarized below.

• In order to compute the new position of an invalid node

n, only the elements that were invalid at n were

considered in the work of Luboz et al. Our technique,

on the other hand, takes into consideration all the

elements attached to n as its displacement can cause

previously valid elements to become invalid.

• In our approach, the nodes to be repaired are grouped in

independent regions to avoid prohibitive computational

costs.

• As opposed to Luboz et al., our algorithm considers

mesh quality as well as mesh validity indicators. It is

thus capable of producing a mesh that guarantees the

stability of the numerical solution yielded by the FE

analysis carried out upon it.

6 Perspectives

In the context of mesh-matching, repair strategies should

take into account the surface representation constraint,

in situations where surface nodes are being moved during

relaxation. This can be accomplished by considering the

gradient of the energy undergoing maximization at a given

improper node not along all space directions, as described

above, but tangentially to the represented organ surface.

The surface representation constraint should only be

implemented for surface mesh nodes, i.e. the ones that need

to rest as close as possible to the modeled domain surface

during the relaxation, to preserve the accuracy of shape

representation.

Domain surface representation could be further main-

tained by correcting small registration degradations likely

to occur during repairing. To this end, an Atlas-to-surface

registration step might be performed after each relaxation

step. Nevertheless, as registration and relaxation are inde-

pendent and not necessarily collaborative procedures, the

convergence of this alternating method should be carefully

studied so as to avoid infinite loops and eventually reach a

repaired mesh configuration.

The local repair technique presented in Sect. 4.2 has

proved to be effective in all cases considered so far [3].

Yet, nodal configurations featuring intricate element inter-

locking can be devised so that the approach proposed here

fails. To overcome this issue, alternate relaxation para-

digms can be considered.

Indeed, we have often observed that during relaxation

complex repair regions transit through a configuration

with a strongly reduced number of improper nodes. In

cases where the relaxation fails, instead of extending the

original repaired region and repeating the process from its

initial configuration, a more efficient approach would be

to start from the region configuration featuring the mini-

mal number of INs encountered during the unsuccessful

relaxation.

Should a repair region be restricted to this smaller

subset, its influence within the mesh must be recomputed

and possible region overlaps checked for. Furthermore, in

order to control the nodal correction amplitudes, track must

be kept of anterior nodal displacements in order to guar-

antee that the original surface representation does not get

excessively perturbed. Although promising, this approach

has not yet been implemented in our software.

Finally, future work should be focused on adding other

quality criteria to repair the mesh. The JR is an excellent

quality criterion that helps to detect invalid and poor

quality elements, but it cannot detect, for instance, ele-

ments with small dihedral angles or elements with warped

faces. For these reasons, other quality criteria like dihedral

angles, aspect-ratio, volume, warping factor, etc. should be

also considered to ensure a quality output mesh.
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